Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 452: 131273, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996540

RESUMEN

To achieve economical and efficient decolorization, two novel flocculants, weakly hydrophobic comb-like chitosan-graft-poly (N, N-Dimethylacrylamide) (CSPD) and strongly hydrophobic chain-like chitosan-graft-L-Cyclohexylglycine (CSLC) were synthesized in this study. To assess the effectiveness and application of CSPD and CSLC, the impacts of factors, including flocculant dosages, initial pH, initial dye concentrations, co-existing inorganic ions and turbidities, on the decolorization performance were explored. The results suggested that the optimum decolorizing efficiencies of the five anionic dyes ranged from 83.17% to 99.40%. Moreover, for accurately controlling flocculation performance, the responses to flocculant molecular structures and hydrophobicity in flocculation using CSPD and CSLC were studied. The Comb-like structure gives CSPD a wider dosage range for effective decolorization and better efficiencies with large molecule dyes under weak alkaline conditions. The strong hydrophobicity makes CSLC more effective in decolorization and more suitable for removing small molecule dyes under weak alkaline conditions. Meanwhile, the responses of removal efficiency and floc size to flocculant hydrophobicity are more sensitive. Mechanism studies revealed that charge neutralization, hydrogen bonding and hydrophobic association worked together in the decolorization of CSPD and CSLC. This study has provided meaningful guidance for developing flocculants in the treatment of diverse printing and dyeing wastewater.

2.
Chemosphere ; 319: 138016, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731670

RESUMEN

Excessive phosphorus in water causes environmental security problems like eutrophication. Advanced two-dimensional material MXene has attracted raising attention in aquatic adsorption, while lack of selectivity and difficult recovery limit its application in phosphate removal. In this study, Ti3C2-MXene embedded zirconium-crosslinked SA (MX-ZrSA) beads were synthesized and their phosphate adsorption performance under different conditions was assessed. Investigations using SEM/EDS, XRD, BET, TGA and contact angle meter reveal that the addition of Ti3C2-MXene enhanced the thermal stability, mechanical strength, hydrophilicity, and formed loose network-like mesoporous inner structure with large surface area. The theoretical maximum adsorption capacity was 492.55 mg P/g and was well fitted by Freundlich and optimized Langmuir models. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis showed that chemisorption was involved, and the formation of Zr-O-P and Ti-O-P complexes accounted for high selectivity and affinity to phosphate. The adsorption experiments in real waters and lab-scale continuous flow Anaerobic-Anoxic-Oxic reactor further indicated the application potential of MX-ZrSA beads. Our study will provide insight into MXene and SA aerogel synergistic adsorption of aquatic contaminants and help with the removal and recovery of finite phosphorus resource.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Agua/química , Circonio/química , Alginatos/química , Titanio/análisis , Fósforo , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...